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Abstract: The goal of this note is to study graded ideals with linear free resolu-
tion and linear quotients in the exterior algebra. We use an extension of the notion
of linear quotients, namely componentwise linear quotients, to give another proof
of the well-known result that an ideal with linear quotients is componentwise
linear. After that, we consider special cases where a product of linear ideals has
a linear free resolution.

1 Introduction

Let K be a field and V an n-dimensional K-vector space, where n ≥ 1, with a fixed
basis e1, . . . , en. We denote by E = K〈e1, . . . , en〉 the exterior algebra of V . It is a standard
graded K-algebra with defining relations v ∧ v = 0 for all v ∈ V and graded components
Ei = ΛiV by setting deg ei = 1. Let M be a finitely generated graded left and right
E-module satisfying the equations

um = (−1)deg udegmmu

for homogeneous elements u ∈ E,m ∈M . The category of such E-modulesM is denoted by
M. For a module M ∈M, the minimal graded free resolution of M is uniquely determined
and it is an exact sequence of the form

. . . −→
⊕
j∈Z

E(−j)β
E
1,j(M) −→

⊕
j∈Z

E(−j)β
E
0,j(M) −→M −→ 0.

Note that βEi,j(M) = dimK TorEi (K,M)j for all i, j ∈ Z. We call the numbers βEi,j(M)
the graded Betti numbers of M . The module M is said to have a d-linear resolution if
βEi,i+j(M) = 0 for all i and j 6= d. This is equivalent to the condition that M is generated
in degree d and all non-zero entries in the matrices representing the differential maps are
of degree one. Following [5], M is called componentwise linear if the submodules M〈i〉 of
M generated by Mi has an i-linear resolution for all i ∈ Z. Furthermore, M is said to
have linear quotients with respect to a homogeneous system of generators m1, . . . ,mr if
(m1, . . . ,mi−1) :E mi is a linear ideal, i.e., an ideal in E generated by linear forms, for
i = 1, . . . , r. We say that M has componentwise linear quotients if each submodule M〈i〉 of
M has linear quotients w.r.t. some of its minimal systems of homogeneous generators for
all i ∈ Z such that Mi 6= 0.
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This paper is devoted to the study of the structure of a minimal graded free resolution
of graded ideals in E. More precisely, we are interested in graded ideals which have d-linear
resolutions, linear quotients or are componentwise linear. It is well-known that a graded
ideal that has linear quotients w.r.t. a minimal system of generators is componentwise linear
(see [10; Corollary 2.4] for the polynomial ring case and [9; Theorem 5.4.5] for the exterior
algebra case). We give another proof for this result in Corollary 3.5 by using Theorem 3.4
which states that if a graded ideal has linear quotients then it has componentwise linear
quotients.

Motivated by a result of Conca and Herzog in [3; Theorem 3.1] that a product of linear
ideals in a polynomial ring has a linear resolution, we study in Section 4 the problem
whether this result holds or not in the exterior algebra. At first, we get a positive answer
for the case the linear ideals are generated by variables (Theorem 4.2). Then we consider
some other special cases (Proposition 4.5, 4.6) when this result also holds.

2 Preliminaries

We present in this section some homological properties of graded modules inM related
to resolutions and componentwise linear property.

Let M ∈ M. The (Castelnuovo-Mumford) regularity for a graded module M ∈ M is
given by

regE(M) = max{j − i : βEi,j(M) 6= 0} for M 6= 0 and regE(0) = −∞.

For every 0 6= M ∈ M, one can show that t(M) ≤ regE(M) ≤ d(M) (see [9; Section 2.1]).
So regE(M) is always a finite number for every M 6= 0.

Note that for a graded ideal J 6= 0, by the above definitions one has regE(E/J) =
regE(J) − 1. This can be seen indeed by the fact that if F• −→ J is the minimal graded
free resolution of J , then F• −→ E −→ E/J is the minimal graded free resolution of E/J .

For a short exact sequence 0 → M → N → P → 0 of non-zero modules in M, there
are relationships among the regularities of its modules by evaluating in Tor-modules in the
long exact sequence

. . . −→ TorEi+1(P,K)i+1+j−1 −→ TorEi (M,K)i+j −→ TorEi (N,K)i+j −→
TorEi (P,K)i+j −→ TorEi−1(M,K)i−1+j+1 −→ . . .

More precisely, one has:

Lemma 2.1. Let 0→M → N → P → 0 be a short exact sequence of non-zero modules in
M. Then:

(i) regE(N) ≤ max{regE(M), regE(P )}.

(ii) regE(M) ≤ max{regE(N), regE(P ) + 1}.

(iii) regE(P ) ≤ max{regE(N), regE(M)− 1}.
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Next we recall some facts about componentwise linear ideals and linear quotients in the
exterior algebra. Componentwise linearity was defined for ideals over the polynomial ring by
Herzog and Hibi in [6] to characterize a class of simplicial complexes, namely, sequentially
Cohen-Macaulay simplicial complexes. Such ideals have been received a lot of attention in
several articles, e.g., [2], [4], [8], [10]. All materials in this section can be found in the book
by Herzog and Hibi (see [5; Chapter 8]) or Kämpf’s dissertation (see [9; Section 5.3, 5.4]).

Definition 2.2. Let M ∈ M be a finitely generated graded E-module. Recall that M
has a d-linear resolution if βEi,i+j(M) = 0 for all i and all j 6= d. Following [5] we call
M componentwise linear if the submodules M〈i〉 of M generated by Mi has an i-linear
resolution for all i ∈ Z.

Note that a componentwise linear module which is generated in one degree has a linear
resolution. A module that has a linear resolution is componentwise linear.

At first, for an ideal with a linear resolution one has the following property.

Lemma 2.3 ([9; Lemma 5.3.4]). Let 0 6= J ⊂ E be a graded ideal. If J has a d-linear
resolution, then mJ has a (d+ 1)-linear resolution.

Next we recall some facts about ideals with linear quotients over the exterior algebra.
For more details, one can see [9; Section 5.4].

Definition 2.4. Let J ⊂ E be a graded ideal with a system of homogeneous genera-
tors G(J) = {u1, . . . , ur}. Then J is said to have linear quotients with respect to G(J) if
(u1, . . . , ui−1) :E ui is an ideal generated by linear forms for i = 1, . . . , r. We say that J
has linear quotients if there exists a minimal system of homogeneous generators G(J) such
that J has linear quotients w.r.t. G(J).

Note that for the definition of linear quotients over the exterior algebra, we need the
condition that 0 :E u1 has to be generated by linear forms, i.e., u1 is a product of linear
forms. This condition is omitted in the definition of linear quotients over the polynomial
ring.

Remark 2.5. Let J be a graded ideal with linear quotients w.r.t. G(J) = {u1, . . . , ur}.
Then deg(ui) ≥ min{deg(u1), . . . ,deg(ui−1)}. Indeed, assume the contrary that deg(ui) <
min{deg(u1), . . . ,deg(ui−1)}. Then there is a nonzero K-linear combination of uj , j =
1, . . . , i− 1, belonging to (ui) since (u1, . . . , ui−1) :E ui is generated by linear forms. Hence,
we can omit one uk in {u1, . . . , ui−1} to get a smaller system of generators, this is a con-
tradiction since G(J) is a minimal.

3 Graded ideals with linear quotients

The goal of this section is to prove by another way the result that graded ideals with
linear quotients are componentwise linear. For this, we use a so-called notion of compo-
nentwise linear quotients which is defined for monomial ideals over the polynomial ring
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by Jahan and Zheng in [8]. We also review matroidal ideals over an exterior algebra as
important examples of ideals with linear quotients.

Let J ⊂ E be a graded ideal with linear quotients and u1, . . . , ur an admissible order
of G(J). Following [8], the order u1, . . . , ur of G(J) is called a degree increasing admissible
order if deg ui ≤ deg ui+1 for i = 1, . . . , r. By using exterior algebra’s technics, we have the
following lemmas which are similar to the ones for monomial ideals over the polynomial
ring proved in [8] (note that we prove here for graded ideals).

Lemma 3.1. Let J ⊂ E be a graded ideal with linear quotients. Then there is a degree
increasing admissible order of G(J).

Proof. We prove the statement by induction on r, the number of generators of J . It is
clear for the case r = 1.

Assume r > 1 and u1, . . . , ur is an admissible order. So J = (u1, . . . , ur−1) has linear quo-
tients with the given order. By the induction hypothesis, we can assume that deg u1 ≤ . . . ≤
deg ur−1. We only need to consider the case deg ur < deg ur−1. Let i be the smallest integer
such that deg ui+1 > deg ur. It is clear that i+1 6= 1 since deg u1 = min{deg u1, . . . ,deg ur}
by Remark 2.5. We now claim that u1, . . . , ui, ur, ui+1, . . . , ur−1 is a degree increasing ad-
missible order of G(J). Indeed, we only need to prove that

(u1, . . . , ui) : ur and (u1, . . . , ui, ur, ui+1, . . . , uj−1) : uj

are generated by linear forms, for j = i+ 1, . . . , r − 1.
At first, we claim that (u1, . . . , ui) : ur = (u1, . . . , ur−1) : ur which is generated by linear

forms since J has linear quotients w.r.t. G(J). The inclusion ⊆ is clear. Now let f be a
linear form in (u1, . . . , ur−1) : ur. Then fur ∈ (u1, . . . , ur−1). We get

fur = g + h, where g ∈ (u1, . . . , ui) and h ∈ (ui+1, . . . , ur−1).

Let deg ur = d. Then deg fur = d+ 1 and deg uj ≥ d+ 1 for j = i+ 1, . . . , r− 1. So we can
assume that h 6= 0 and deg g = deg h = d + 1. This implies that h is a linear combination
of some of ui+1, . . . , ur−1 and h = fur − g ∈ (u1, . . . , ui, ur). This contradicts the fact that
G(J) is a minimal system of generators. Hence h = 0 and we get fur = g ∈ (u1, . . . , ui).
Then f ∈ (u1, . . . , ui) : ur. So (u1, . . . , ui) : ur = (u1, . . . , ur−1) : ur is generated by linear
forms.

Next let i+ 1 ≤ j ≤ r − 1, we aim to show that

(u1, . . . , ui, ur, ui+1, . . . , uj−1) : uj = (u1, . . . , ui, ui+1, . . . , uj−1) : uj

which is generated by linear forms. The inclusion ⊇ is clear.
Let f ∈ (u1, . . . , ui, ur, ui+1, . . . , uj−1) : uj . We have

fuj = g + hur, where g ∈ (u1, . . . , ui, ui+1, . . . , uj−1) and h ∈ E.

Then fuj − g = hur. Therefore, hur ∈ (u1, . . . , ui, ui+1, . . . , uj−1, uj) and then

h ∈ (u1, . . . , ui, ui+1, . . . , uj−1, uj) : ur = (u1, . . . , ui) : ur
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by the above claim. Hence hur ∈ (u1, . . . , ui) and fuj ∈ (u1, . . . , ui, ui+1, . . . , uj−1). This
implies f ∈ (u1, . . . , ui, ui+1, . . . , uj−1) : uj and we can conclude the proof.

Similar to Lemma 2.3, for ideals with linear quotients we have:

Lemma 3.2. Let J ⊂ E be a graded ideal. If J has linear quotients, then mJ has linear
quotients.

Proof. Let G(J) = {u1, . . . , ur} be a minimal system of generators of J such that J has
linear quotients w.r.t. G(J). We prove the assertion by induction on r.

If r = 1, it is clear that the assertion holds. Now let r > 1, consider the set

B = {u1e1, . . . , u1en, u2e1, . . . , u2en, . . . , ure1, . . . , uren}.

Then B is a system of generators of mJ . Note that B is usually not the minimal system
of generators. We claim that one can chose a subset of B which is a minimal system of
generators of mJ and mJ has linear quotients w.r.t. this subset.

For 1 ≤ p ≤ r, 1 ≤ q ≤ n, denote

Jp,q = m(u1, . . . , up−1) + (upe1, . . . , upeq−1),

Ip,q = (u1, . . . , up−1) : up + (e1, . . . , eq).

Note that Ip,q is generated by linear forms. If upeq ∈ Jp,q, then we remove upeq from B. By
this way, we get the minimal set

B′ = {uiej : i = 1, . . . , r, j ∈ Fi}.

Now we shall order B′ in the following way: ui1ej1 comes before ui2ej2 if i1 < i2 or i1 = i2
and j1 < j2. By induction hypothesis, we have that m(u1, . . . , ur−1) has linear quotients
w.r.t. the following system of generators

B′′ = {uiej : i = 1, . . . , r − 1, j ∈ Fi} ⊂ B′.

Next let j ∈ Fr, it remains to show that Jr,j : urej is generated by linear forms. Indeed,
we claim that Jr,j : urej = Ir,j . Let f = g + h ∈ Ir,j , where h ∈ (e1, . . . , ej) and g ∈
(u1, . . . , ur−1) : ur. Then h(urej) ∈ (ure1, . . . , urej−1) ⊆ Jr,j . In addition,

g(urej) = ±ej(gur) ∈ m(u1, . . . , ur−1) ⊆ Jr,j .

So we get Ir,j ⊆ Jr,j : urej .
Now let f ∈ Jr,j : urej , then f(urej) ∈ Jr,j . Therefore, fej ∈ Jr,j : ur. To ensure that

f ∈ Ir,j we only need to prove that:

(i) Jr,j : ur ⊆ Ir,j−1,

(ii) Ir,j−1 : ej = Ir,j , i.e., ej is a regular element on Ir,j−1.
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To prove (i), let g ∈ Jr,j : ur, then gur ∈ Jr,j . Hence gur = h1 + h2ur, where h1 ∈
(u1, . . . , ur−1) and h2 ∈ (e1, . . . , ej−1). This implies that (g − h2)ur ∈ (u1, . . . , ur−1). Thus
g − h2 ∈ (u1, . . . , ur−1) : ur. So we get g ∈ Ir,j−1 since h2 ∈ (e1, . . . , ej−1). Therefore,
Jr,j : ur ⊆ Ir,j−1.

To prove (ii), we note that ej 6∈ Ir,j−1. Indeed, if ej ∈ Ir,j−1, then

ejur ∈ (u1, . . . , ur−1) + (e1, . . . , ej−1)ur.

It follows that
ejur ∈ m(u1, . . . , ur−1) + (e1, . . . , ej−1)ur = Jr,j

since deg ejur ≥ deg ui + 1 for i = 1, . . . , r − 1. This contradicts the fact that ejur 6∈ Jr,j
because of the choice of B′. Therefore, ej is a regular element on Ir,j−1 because of the fact
that Ir,j−1 is a linear ideal and ej 6∈ Ir,j−1.

Remark 3.3. Observe the following:

(i) The converse of the above lemma is not true. For instance, let J = (e12, e34) ⊂
K〈e1, e2, e3, e4〉. Then mJ = (e123, e124, e134, e234) has linear quotients in the given
order, but J does not have linear quotients.

(ii) We cannot replace m in the above lemma by a subset of variables. So we see that
the product of two graded ideals with linear quotients need not have linear quotients
again. For example, let J = (e123, e134, e125, e256) be a graded ideal in K〈e1, . . . , e6〉.
Then we can check that J has linear quotients but P = (e1, e2)J = (e1234, e1256) has
no linear quotients since P is generated in one degree and it does not have a linear
resolution.

Recall that a graded ideal J ⊂ E has componentwise linear quotients if each component
of J has linear quotients. Now we are ready to prove the main result of this section.

Theorem 3.4. Let J ⊂ E be a graded ideal. If J has linear quotients, then J has compo-
nentwise linear quotients.

Proof. By Lemma 3.1 and Lemma 3.2, we can assume that J is generated in two degrees
d and d + 1 and G(J) = {u1, . . . , up, v1, . . . , vq} is a minimal system of generators of J ,
where deg ui = d for i = 1, . . . , p and deg vj = d+ 1 for j = 1, . . . , q. By Lemma 3.1, we can
also assume that u1, . . . , up, v1, . . . , vq is an admissible order, so J〈d〉 has linear quotients
and then a linear resolution. We only need to prove that J〈d+1〉 has also linear quotients.

We have J〈d+1〉 = m(u1, . . . , up) + (v1, . . . , vq). So we can assume that

G(J〈d+1〉) = {w1, . . . , ws, v1, . . . , vq},

where w1, . . . , ws is ordered as in Lemma 3.2 and the order is admissible. We only need to
ensure that (w1, . . . , ws, v1, . . . , vi−1) : vi is generated by linear forms for 1 ≤ i ≤ q. Indeed,
we claim that

(w1, . . . , ws, v1, . . . , vi−1) : vi = (u1, . . . , up, v1, . . . , vi−1) : vi, (1)
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which is generated by linear forms since J has linear quotients w.r.t. G(J).
The inclusion "⊆" is clear. Now let f ∈ (u1, . . . , up, v1, . . . , vi−1) : vi, we have fvi ∈

(u1, . . . , up, v1, . . . , vi−1). So fvi = g+h, where g ∈ (u1, . . . , up) and h ∈ (v1, . . . , vi−1). Since
deg fvi ≥ d + 1, we can assume that deg g ≥ d + 1. Moreover, deg uj = d for j = 1, . . . , p,
therefore g ∈ m(u1, . . . , up) = (w1, . . . , ws). Hence

fvi ∈ (w1, . . . , ws, v1, . . . , vi−1) and then f ∈ (w1, . . . , ws, v1, . . . , vi−1) : vi.

This concludes the proof.
We get a direct consequence of this theorem which is analogous to a result over the

polynomial ring of Sharifan and Varbaro in [10; Corollary 2.4]:

Corollary 3.5. If J ⊂ E is a graded ideal with linear quotients, then J is componentwise
linear.

The converse of Theorem 3.4 is still not known. However, we can prove the following:

Proposition 3.6. Let J ⊂ E be a graded ideal with componentwise linear quotients. Sup-
pose that for each component J〈i〉 there exists an admissible order δi of G(J〈i〉) such that
the elements of G(mJ〈i−1〉) form the initial part of δi. Then J has linear quotients.

Proof. By the same argument as in the proof of Theorem 3.4, in particular, using the
equation (1), we can confirm that J has linear quotients.

To conclude this section, we present a class of ideal with linear quotients, which will be
used in the next section.

Example 3.7. A monomial ideal J ⊂ E is said to be matroidal if it is generated in one
degree and if it satisfies the following exchange property:

for all u, v ∈ G(J), and all i with i ∈ supp(u) \ supp(v), there exists an integer j with
j ∈ supp(v) \ supp(u) such that (u/ei)ej ∈ G(J).

Now it is the same to the polynomial rings case that matroidal ideals have linear quo-
tients. So a matroidal ideal is a componentwise linear ideal generated in one degree, hence it
has a linear resolution. For the convenience of the reader we reproduce from [3; Proposition
5.2] the proof of this property. Proof. Let J ⊂ E be a matroidal ideal. We aim to prove that
J has linear quotients with respect to the reverse lexicographical order of the generators.

Let u ∈ G(J) and let Ju be the ideal generated by all v ∈ G(J) with v > u in the reverse
lexicographical order. Then we get

Ju : u = (v/[v, u] : v ∈ Ju) + ann(u).

We claim that Ju : u is generated by linear forms. Note that ann(u) is generated by linear
forms which are variables appearing in u. So we only need to show that for each v ∈ G(J)
and v > u, there exists a variable ej ∈ Ju : u such that ej divides v/[v, u].

Let u = ea11 . . . eann and v = eb11 . . . ebnn , where 0 ≤ ai, bj ≤ 1 and deg u = deg v. Since
v > u, there exist an integer i such that ai > bi and ak = bk for k = i+ 1, . . . , n. Moreover,
J is a matroidal ideal and i ∈ supp(u) \ supp(v), hence there exists an integer j such
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that bj > aj , or in other words, j ∈ supp(v) \ supp(u), such that u′ = ej(u/ei) ∈ G(J).
Then uej = u′ei. Since j < i, we get u′ > u and u′ ∈ Ju. Hence ej ∈ Ju : u. Next by
j ∈ supp(v) \ supp(u) = supp(v/[v, u]), we have that ej divides v/[v, u], this concludes the
proof.

4 Product of ideals with a linear free resolution

Motivated by a result of Conca and Herzog in [3] that the product of linear ideals (ideals
generated by linear forms) over the polynomial ring has a linear resolution, we study in this
section the following related problem:

Question 4.1. Let J1, . . . , Jd ⊆ E be linear ideals. Is it true that the product J = J1 . . . Jd
has a linear resolution?

At first, by modifying the technic of Conca and Herzog in [3] for the exterior algebra,
we get a positive answer to the above question for the case Ji is generated by variables for
i = 1, . . . , d.

Theorem 4.2. The product of linear ideals which are generated by variables has a linear
free resolution.

Proof. Let J1, . . . , Jd ⊆ E be ideals generated by variables and J = J1 . . . Jd. If J = 0,
then the statement is trivial. We prove the statement for J 6= 0 by two ways. One uses
properties of matroidal ideals and the other is a more conceptual proof.

Recall that a monomial ideal J is matroidal if it is generated in one degree such that
for all u, v ∈ G(J), and all i with i ∈ supp(u) \ supp(v), there exists an integer j with j ∈
supp(v) \ supp(u) such that (u/ei)ej ∈ G(J). For the convenience of the reader, we present
next the fact (following the proof of Conca and Herzog [3] in the polynomial ring case)
that a product of two matroidal ideals over the exterior algebra is also a matroidal ideal.
In fact, let I, J be matroidal ideals, u, u1 ∈ G(I) and v, v1 ∈ G(J) such that uv, u1v1 6= 0
and uv, u1v1 ∈ G(IJ). Let i ∈ supp(u1v1) \ supp(uv). We need to show that there exists an
integer j ∈ supp(uv) \ supp(u1v1) with (u1v1/ei)ej ∈ G(IJ).

Since supp(u1v1) = supp(u1) ∪ supp(v1), without loss of generality, we may assume
that i ∈ supp(u1). Then i ∈ supp(u1) \ supp(u). Since I is a matroidal ideal, there exists
j1 ∈ supp(u)\ supp(u1) such that u2 = (u1/ei)ej1 ∈ G(I). Now we have two following cases:

Case 1: If j1 6∈ supp(v1), then

j1 ∈ supp(uv) \ supp(u1v1) and 0 6= (u1v1/ei)ej1 = u2v1 ∈ G(IJ).

So we can choose j = j1.
Case 2: If j1 ∈ supp(v1), then j1 6∈ supp(v) since j1 ∈ supp(u) and uv 6= 0. So j1 ∈

supp(v1) \ supp(v). Now since J is matroidal, there exists k1 ∈ supp(v) \ supp(v1) with
v2 = (v1/ej1)ek1 ∈ G(J). Note that k1 6= i since i 6∈ supp(v) but k1 ∈ supp(v).

If k1 6∈ supp(u2) \ supp(u), then k1 6∈ supp(u1) since u2 = (u1/ei)ej1 . We get

k1 ∈ supp(uv) \ supp(u1v1)
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and
0 6= (u1v1/ei)ek1 = (u1/ei)ej1(v1/ej1)ek1 = u2v2 ∈ G(IJ).

So we are done because we can choose j = k1.
Otherwise k1 ∈ supp(u2) \ supp(u). Since I is matroidal, there exists j2 such that

j2 ∈ supp(u) \ supp(u2) with 0 6= u3 = (u2/ek1)ej2 ∈ G(I).

Observe that j2 6= i since j2 ∈ supp(u) and i 6∈ supp(u). Then we get

0 6= (u1v1/ei)ej2 = ((u1/ei)ej1/ek1)ej2(v1/ej1)ek1 = u3v2 ∈ G(IJ)

and we can choose j = j2. Hence the product of two matroidal ideals is also matroidal.
Now it is obvious that Ji is a matroidal ideal for i = 1, . . . , d. Therefore, J is also a

matroidal ideal. So J has a linear resolution by the fact a matroidal ideal has a linear
resolution; see Example 3.7.

Note that in the above proof, we need the following lemma:

Lemma 4.3 ([5; Proposition 8.2.17]). Let I be a monomial ideal in the polynomial ring S
which is generated in degree d. If I has a d-linear resolution, then the ideal generated by
squarefree parts of degree d in I has a d-linear resolution.

Next we study some further special cases of products of ideals. For this we need the
following lemma:

Lemma 4.4. Let J ⊂ E be a graded ideal and f ∈ E1 a linear form such that f is E/J-
regular. If J has a d-linear resolution then fJ has a (d+ 1)-linear resolution.

Proof. By changing the coordinates, we can assume that f = en and en is E/J-regular.
We have J :E en = J + (en). Therefore, J ∩ (en) = enJ . Hence,

(J + (en))/(en) ∼= J/(J ∩ (en)) = J/enJ.

Since J has a d-linear resolution, (J + (en))/(en) has a d-linear resolution over E/(en) ∼=
K〈e1, . . . , en−1〉. Note that the inclusion K〈e1, . . . , en−1〉 ↪→ K〈e1, . . . , en〉 is a flat mor-
phism. Therefore, (J+(en))/(en) also has a d-linear resolution over E, i.e., reg(J+(en))/(en)) =
d.

Now consider the short exact sequence

0 −→ enJ −→ J −→ J/(enJ) −→ 0.

By Lemma 2.1, we have

reg(enJ) ≤ max{reg(J), reg(J)/(enJ) + 1} = d+ 1.

Since enJ is generated in degree d + 1, we have reg(enJ) ≥ d + 1. This implies that
reg(enJ) = d+ 1.

Considering a product of two or three linear ideals, we have:
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Proposition 4.5. Let I, J be linear ideals such that IJ 6= 0. Then IJ has a 2-linear free
resolution.

Proof. Since I, J are linear ideals, we can assume that I + J = m, otherwise I, J are in
a smaller exterior algebra which we can modulo a regular sequence to get I + J = m. By
changing the coordinate and choosing suitable generators, we can assume further that

I = (e1, . . . , es) and J = (es+1, . . . , en, g1, . . . , gr),

where 1 ≤ s < n and gi is a linear form in K〈e1, . . . , es〉 for i = 1, . . . , r.
Let E′ = K〈e1, . . . , en−1〉, J ′ = (es+1, . . . , en−1, g1, . . . , gr) ⊂ E′ and I ′ = (e1, . . . , es) ⊂

E′. We have J = J ′E + (en) and I = I ′E.
Now we prove the statement by induction on n.
For the case n = 1 or n = 2, we have only two case I = (e1) and J = (e1) or J = (e1, e2).

Then IJ = (0) or IJ = (e1e2), the statement holds for both these cases.
Assume that the statement is true for n − 1. This implies that the ideal I ′J ′ has a

2-linear resolution in E′, i.e, regE′(I ′J ′) = 2. Hence, regE(I ′J ′E) = 2 . Note that en is
I ′J ′E-regular. This implies that IJ ′ : en = IJ ′ + (en). Then IJ ′ ∩ enI = enIJ

′. In fact, let
f ∈ IJ ′ ∩ enI, then f = gen with g ∈ I. Hence

g ∈ IJ ′ : en = IJ ′ + (en) and then eng ∈ enIJ ′.

Therefore, f ∈ enIJ ′ and we get IJ ′ ∩ enI = enIJ
′.

Consider the short exact sequence

0 −→ IJ ′ ∩ enI −→ IJ ′ ⊕ enI −→ IJ ′ + enI −→ 0.

This can be rewritten as

0 −→ enIJ
′ −→ IJ ′ ⊕ enI −→ IJ −→ 0.

Since regE(IJ ′) = 2 and regE(enIJ
′) = 3 by Lemma 4.4, using Lemma 2.1 we get

regE(IJ) ≤ max{regE(IJ ′), regE(enIJ
′)− 1} = 2.

It is clear that regE(IJ) ≥ 2 since IJ is generated in degree 2, so we get regE(IJ) = 2.
This concludes the proof.

Proposition 4.6. Let I, J, P ⊂ E be linear ideals such that IJP 6= 0 and

I + J, I + P, J + P ( I + J + P.

Then the product IJP has a 3-linear free resolution.

Proof. Since I, J, P are linear ideals, we can assume that I+J+P = m and I, J, P ( m.
Now we prove the statement by induction on n.

Suppose that the statement holds for n − 1, that means for 3 linear ideals in E′ =
K〈e1, . . . , en−1〉, their product has a 3-linear free resolution.
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Since I + J ( m, by changing the coordinate and choosing suitable generators, we can
assume that I, J are generated by linear forms in E′ and P = (en, f1, . . . , fl), where fi ∈ E′
for i = 1, . . . , l. Let P ′ = (f1, . . . , fl). We have IJP = IJP ′ + enIJ . Since I, J, P ′ are
generated by linear forms in E′, by the induction hypothesis and Proposition 4.5, we have
that regE′(IJP ′ ⊗E E′) = 3 and regE′(IJ ⊗E E′) = 2. By Lemma 4.4 and the fact that E
is a flat extension of E′, we get that regE(enIJ) = 3 and regE(enIJP

′) = 4.
Now it is clear that enIJP ′ ⊆ IJP ′ ∩ enIJ . We aim to prove the equality. Since en is

E′-regular in E and I, J, P ′ are generated by linear forms in E′, we get that IJP ′ : en =
IJP ′+ (en). Let f ∈ IJP ′ ∩ enIJ . Then f = eng with g ∈ IJ . We have g ∈ IJP ′ : en. This
implies that g ∈ IJP ′+(en) and then f = eng ∈ enIJP ′. So we get enIJP ′ = IJP ′∩enIJ .
By Lemma 2.1 and the following short exact sequence

0 −→ enIJP
′ −→ IJP ′ ⊕ (en)IJ −→ IJP −→ 0,

we get
regE(IJP ) ≤ max{regE(enIJP

′)− 1, regE(IJP ′ ⊕ enIJ)} = 3.

Moreover, IJP is generated in degree 3, so regE(IJP ) ≥ 3. This implies that IJP has a
3-linear free resolution.

Next we consider one more special case of products of ideals: powers of ideals. In [7],
Herzog, Hibi and Zheng prove that if a monomial ideal I in the polynomial ring S has a
2-linear resolution, then every power of I has a linear resolution. We have the same result
for the exterior algebra:

Proposition 4.7. Let J ⊂ E be a nonzero monomial ideal in E. If J has a 2-linear
resolution, then every power of J has a linear resolution.

Proof. Let I ⊂ S be the ideal in the polynomial ring S corresponding to J . Then I is
a squarefree ideal with a 2-linear resolution by [1; Corollary 2.2]. We only need to consider
the case Jm 6= 0 for an integer m. We have Im has a linear resolution by [7; Theorem 3.2].
By Lemma 4.3, the squarefree monomial ideal (Im)[2m] has also a linear resolution. Note
that (Im)[2m] corresponds to Jm in E, so using [1; Corollary 2.2] again, we conclude that
Jm has a linear resolution.

Remark 4.8. A linear form f is E/J-regular but it may be not E/J2-regular. This is
a difference between the polynomial ring and the exterior algebra. For instance, let J =
(e12 + e34, e13, e23) in K〈e1, . . . , e4〉. Then e4 is E/J-regular since J : e4 = J + (e4). But e4
is not E/J2-regular since J2 = (e1234) and J2 : (e4) = (e123) + (e4) ) J2 + (e4).
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TÓM TẮT

VỀ IĐÊAN PHÂN BẬC CÓ GIẢI TỰ DO TUYẾN TÍNH

VÀ THƯƠNG TUYẾN TÍNH TRONG ĐẠI SỐ NGOÀI

Bài báo này nhằm mục đích nghiên cứu các iđêan phân bậc có giải tự do tuyến tính,
có thương tuyến tính trong đại số ngoài. Chúng tôi sử dụng một khái niệm mở rộng của
thương tuyến tính, gọi tên là thương tuyến tính từng phần, để đưa ra một chứng minh khác
cho một kết quả nổi tiếng rằng một iđêan có thương tuyến tính là tuyến tính từng phần.
Sau đó, chúng tôi xét một vài trường hợp đặc biệt mà một tích của các iđêan tuyến tính
có một giải tự do tuyến tính.
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