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Abstract: The goal of this note is to study graded ideals with linear free resolu-
tion and linear quotients in the exterior algebra. We use an extension of the notion
of linear quotients, namely componentwise linear quotients, to give another proof
of the well-known result that an ideal with linear quotients is componentwise
linear. After that, we consider special cases where a product of linear ideals has
a linear free resolution.

1 Introduction

Let K be a field and V an n-dimensional K-vector space, where n > 1, with a fixed
basis eq,...,e,. We denote by E = K(eq,...,ey,) the exterior algebra of V. It is a standard
graded K-algebra with defining relations v A v = 0 for all v € V and graded components

= AV by setting dege; = 1. Let M be a finitely generated graded left and right
FE-module satisfying the equations

Wi = (_1)degudegmmu

for homogeneous elements v € E, m € M. The category of such F-modules M is denoted by
M. For a module M € M, the minimal graded free resolution of M is uniquely determined
and it is an exact sequence of the form

—>@E '317 —>@E 50] ) — M —0.
JEL JEZ

Note that BZE](M) dimg Tor? (K, M); for all i,j € Z. We call the numbers 37 (M)
the graded Betti numbers of M. The module M is said to have a d-linear resolutwn if

5 +;(M) =0 for all i and j # d. This is equivalent to the condition that M is generated
in degree d and all non-zero entries in the matrices representing the differential maps are
of degree one. Following [5], M is called componentwise linear if the submodules My of

M generated by M; has an i-linear resolution for all ¢ € Z. Furthermore, M is said to

have linear quotients with respect to a homogeneous system of generators mi,...,m, if
(my,...,mj—1) :g m; is a linear ideal, i.e., an ideal in F generated by linear forms, for
i=1,...,r. We say that M has componentwise linear quotients if each submodule M of

M has linear quotients w.r.t. some of its minimal systems of homogeneous generators for
all ¢ € Z such that M; # 0.
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This paper is devoted to the study of the structure of a minimal graded free resolution
of graded ideals in . More precisely, we are interested in graded ideals which have d-linear
resolutions, linear quotients or are componentwise linear. It is well-known that a graded
ideal that has linear quotients w.r.t. a minimal system of generators is componentwise linear
(see [10; Corollary 2.4] for the polynomial ring case and [9; Theorem 5.4.5] for the exterior
algebra case). We give another proof for this result in Corollary by using Theorem
which states that if a graded ideal has linear quotients then it has componentwise linear
quotients.

Motivated by a result of Conca and Herzog in [3; Theorem 3.1] that a product of linear
ideals in a polynomial ring has a linear resolution, we study in Section {] the problem
whether this result holds or not in the exterior algebra. At first, we get a positive answer
for the case the linear ideals are generated by variables (Theorem . Then we consider
some other special cases (Proposition when this result also holds.

2 Preliminaries

We present in this section some homological properties of graded modules in M related
to resolutions and componentwise linear property.

Let M € M. The (Castelnuovo-Mumford) regularity for a graded module M € M is
given by

regp (M) = max{j —i: lE](M) # 0} for M # 0 and regp(0) = —oc.

For every 0 # M € M, one can show that ¢(M) < regp(M) < d(M) (see [9; Section 2.1]).
So regp (M) is always a finite number for every M # 0.

Note that for a graded ideal J # 0, by the above definitions one has regp(E/J) =
regp(J) — 1. This can be seen indeed by the fact that if F — J is the minimal graded
free resolution of J, then Fy — E — FE/J is the minimal graded free resolution of £/.J.

For a short exact sequence 0 - M — N — P — 0 of non-zero modules in M, there
are relationships among the regularities of its modules by evaluating in Tor-modules in the
long exact sequence

oo — Torfy (P, K)ig14j-1 — Tor?(M,K)i1; — Torf(N,K)ir; —
TOI‘ZE(P, K)iJrj — TOI"iE;l(M, K)i,1+j+1 — ...

More precisely, one has:

Lemma 2.1. Let 0 - M — N — P — 0 be a short exact sequence of non-zero modules in
M. Then:

(i) regp(N) < max{regp(M),regp(P)}.
(11) regp (M) < max{regy(N),regy(P) + 1}.

(11i) regp(P) < max{regy(N),regp(M) — 1}.
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Next we recall some facts about componentwise linear ideals and linear quotients in the
exterior algebra. Componentwise linearity was defined for ideals over the polynomial ring by
Herzog and Hibi in [6] to characterize a class of simplicial complexes, namely, sequentially
Cohen-Macaulay simplicial complexes. Such ideals have been received a lot of attention in
several articles, e.g., [2], [4], [8], [10]. All materials in this section can be found in the book
by Herzog and Hibi (see [5; Chapter 8]) or Kampf’s dissertation (see [9; Section 5.3, 5.4]).

Definition 2.2. Let M € M be a finitely generated graded E-module. Recall that M
has a d-linear resolution if BzEl +j(M) = 0 for all i and all j # d. Following [5] we call
M componentwise linear if the submodules My of M generated by M; has an i-linear
resolution for all ¢ € Z.

Note that a componentwise linear module which is generated in one degree has a linear
resolution. A module that has a linear resolution is componentwise linear.
At first, for an ideal with a linear resolution one has the following property.

Lemma 2.3 ([9; Lemma 5.3.4]). Let 0 # J C E be a graded ideal. If J has a d-linear
resolution, then mJ has a (d + 1)-linear resolution.

Next we recall some facts about ideals with linear quotients over the exterior algebra.
For more details, one can see [9; Section 5.4].

Definition 2.4. Let J C E be a graded ideal with a system of homogeneous genera-
tors G(J) = {uq,...,u,}. Then J is said to have linear quotients with respect to G(J) if
(u1,...,ui—1) :g u; is an ideal generated by linear forms for ¢ = 1,...,r. We say that J
has linear quotients if there exists a minimal system of homogeneous generators G(J) such
that J has linear quotients w.r.t. G(J).

Note that for the definition of linear quotients over the exterior algebra, we need the
condition that 0 :p u; has to be generated by linear forms, i.e., u; is a product of linear
forms. This condition is omitted in the definition of linear quotients over the polynomial
ring.

Remark 2.5. Let J be a graded ideal with linear quotients w.r.t. G(J) = {u1,...,u,}.
Then deg(u;) > min{deg(u1),...,deg(u;—1)}. Indeed, assume the contrary that deg(u;) <

min{deg(u1),...,deg(u;—1)}. Then there is a nonzero K-linear combination of uj, j =
1,...,i—1, belonging to (u;) since (u1,...,u;—1) :p u; is generated by linear forms. Hence,
we can omit one uy in {uy,...,u;—1} to get a smaller system of generators, this is a con-

tradiction since G(J) is a minimal.

3 Graded ideals with linear quotients
The goal of this section is to prove by another way the result that graded ideals with

linear quotients are componentwise linear. For this, we use a so-called notion of compo-
nentwise linear quotients which is defined for monomial ideals over the polynomial ring
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by Jahan and Zheng in [8]. We also review matroidal ideals over an exterior algebra as
important examples of ideals with linear quotients.

Let J C E be a graded ideal with linear quotients and u1,...,u, an admissible order
of G(J). Following [8], the order w1, ...,u, of G(J) is called a degree increasing admissible
order if degu; < degu;y1 for i =1,...,r. By using exterior algebra’s technics, we have the

following lemmas which are similar to the ones for monomial ideals over the polynomial
ring proved in [8] (note that we prove here for graded ideals).

Lemma 3.1. Let J C F be a graded ideal with linear quotients. Then there is a degree
increasing admissible order of G(J).

Proof. We prove the statement by induction on r, the number of generators of J. It is
clear for the case r = 1.

Assume r > 1 and uq, . .., u, is an admissible order. So J = (uy, ..., u,—1) has linear quo-
tients with the given order. By the induction hypothesis, we can assume that degu; < ... <
deg u,—1. We only need to consider the case degu, < degu,_1. Let ¢ be the smallest integer
such that degu;11 > degu,. It is clear that i+ 1 # 1 since degu; = min{degu,...,degu,}
by Remark We now claim that wq, ..., u;, tr, Uijy1,...,ur—1 i & degree increasing ad-
missible order of G(J). Indeed, we only need to prove that

(wiy .o ug) s up and (Wi, . oo, W, Upy Wit 1, -0, Uj—1) & Uy

are generated by linear forms, for j =7+ 1,...,r — 1.

At first, we claim that (uy,...,u;) : up = (u1,...,ur—1) : u, which is generated by linear
forms since J has linear quotients w.r.t. G(J). The inclusion C is clear. Now let f be a
linear form in (u1,...,ur—1) : up. Then fu, € (u1,...,ur—1). We get

fu, =g+ h, where g € (u1,...,u;) and h € (Ujt1,...,Ur_1).

Let degu, = d. Then deg fu, =d+1 and degu; > d+1for j=i+1,...,7—1. So we can
assume that h # 0 and degg = degh = d + 1. This implies that h is a linear combination

of some of wjt1,...,ur—1 and h = fu, — g € (u1,...,u;,u,). This contradicts the fact that
G(J) is a minimal system of generators. Hence h = 0 and we get fu, = g € (u1,...,u;).
Then f € (ug,...,u;) @ up. SO (Ug,...,u;) : up = (U1,...,Ur—1) : U, is generated by linear
forms.

Next let i +1 < j <r —1, we aim to show that
(ul,.. ey Ugs Upy Ugt-15 - - - ,uj,l) TU; = (ul,.. . ,ui,uiJrl,...,uj,l) S Uy

which is generated by linear forms. The inclusion D is clear.

Let f € (u1,...,u, Ur, Uit1,--.,uj—1) : uj. We have
fuj = g + hu,, where g € (u1,..., % Uit1,...,u5—1) and h € E.
Then fu; — g = hu,. Therefore, hu, € (u1,...,u;, Wit1,...,uj—1,u;) and then
he (ur,. .o, Wigts oy Uj—1,U5) Uy = (UL, .o, W) © Up
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by the above claim. Hence hu, € (u1,...,u;) and fu; € (u1,...,u;, Uiy1,-..,uj—1). This
implies f € (u1,...,ui, Uit1,...,uj—1) : u; and we can conclude the proof.
Similar to Lemma [2.3] for ideals with linear quotients we have:

Lemma 3.2. Let J C E be a graded ideal. If J has linear quotients, then mJ has linear
quotients.

Proof. Let G(J) = {u1,...,u,} be a minimal system of generators of .J such that J has
linear quotients w.r.t. G(J). We prove the assertion by induction on r.
If » =1, it is clear that the assertion holds. Now let » > 1, consider the set

B ={ujeq,...,u1epn, uge, ..., U2€p, ..., Up€l, ..., Upep}.

Then B is a system of generators of mJ. Note that B is usually not the minimal system
of generators. We claim that one can chose a subset of B which is a minimal system of
generators of mJ and mJ has linear quotients w.r.t. this subset.

For 1 <p<r1<q<n, denote

Jp»q - m(u17 s 7up—1) + (upeh cee ,Upeq_l),

Iyg = (u1,...;up—1) cup+ (€1,...,€q).

Note that I, ; is generated by linear forms. If u,e, € Jp 4, then we remove uye, from B. By
this way, we get the minimal set

B'z{uiej:izl,...,r,jGFi}.

Now we shall order B’ in the following way: u;, e, comes before u;,e;, if 11 < or i; = iz
and j; < jo. By induction hypothesis, we have that m(uy,...,u,—1) has linear quotients
w.r.t. the following system of generators

B" ={ujej:i=1,...,r—1,j€ F;} C B'.
Next let j € F;., it remains to show that J,.; : u,e; is generated by linear forms. Indeed,
we claim that J,; : ure; = I, ;. Let f = g+ h € I,;, where h € (e1,...,¢;) and g €
(w1,...,up—1) : up. Then h(ure;) € (urer, ..., urej—1) C Jy;. In addition,
g(ure;) = tej(guy) € m(ug, ..., up—1) C Jpj.
So we get I.; C Jy; : ure;.
Now let f € J,j : urej, then f(ure;) € J,;. Therefore, fe; € J,; : u,. To ensure that
f € I, ; we only need to prove that:

(1) Jrjrur CInj1,

(ii) Irj—1:e; =1, i.e., e; is a regular element on I, ;1.
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To prove (i), let g € J,; : u,, then gu, € J,;. Hence gu, = hy + hou,, where h; €
(w1,...,up—1) and hg € (e1,...,ej—1). This implies that (¢ — ho)u, € (u1,...,ur—1). Thus
g—ha € (ur,...,ur—1) : up. So we get g € I, ;1 since hy € (e1,...,ej—1). Therefore,
Jr,j tup C Ir,j—l-

To prove (ii), we note that e; € I, j_i. Indeed, if e; € I, ;_1, then

ety € (Ui, ..., up—1) + (€1, .., €—1)Uy.

It follows that
ejuy € m(ur, ..., ur—1) + (€1,...,€j-1)up = Jpj

since degeju, > degu; + 1 for i = 1,...,r — 1. This contradicts the fact that e;ju, € J;;
because of the choice of B’. Therefore, e; is a regular element on I, ;1 because of the fact
that I, ;_1 is a linear ideal and e; & I, ;1.

Remark 3.3. Observe the following:

(i) The converse of the above lemma is not true. For instance, let J = (e12,e34) C
K ey, e9,e3,e4). Then mJ = (e123,€124, €134, €234) has linear quotients in the given
order, but J does not have linear quotients.

(ii) We cannot replace m in the above lemma by a subset of variables. So we see that
the product of two graded ideals with linear quotients need not have linear quotients
again. For example, let J = (ej23, €134, €125, €256) be a graded ideal in K (e, ..., eg).
Then we can check that J has linear quotients but P = (e1,e2)J = (e1234, €1256) has
no linear quotients since P is generated in one degree and it does not have a linear
resolution.

Recall that a graded ideal J C E has componentwise linear quotients if each component
of J has linear quotients. Now we are ready to prove the main result of this section.

Theorem 3.4. Let J C E be a graded ideal. If J has linear quotients, then J has compo-
nentwise linear quotients.

Proof. By Lemma and Lemma[3.2] we can assume that J is generated in two degrees
dand d+ 1 and G(J) = {u1,...,up,v1,...,v4} is a minimal system of generators of J,
where degu; =d fori=1,...,pand degv; =d+1for j=1,...,9. By Lemma we can
also assume that wuy,...,up,v1,...,v4 is an admissible order, so Ji4 has linear quotients
and then a linear resolution. We only need to prove that J41) has also linear quotients.

We have Jyg11y = m(u1,...,up) + (v1,...,74). So we can assume that

G(Jig1y) = {w, .. ws, 1,0, 0},

where w1, ..., ws is ordered as in Lemma |3.2| and the order is admissible. We only need to
ensure that (w1, ..., ws,v1,...,v;—1) : v; is generated by linear forms for 1 < i < ¢. Indeed,
we claim that

(Wi, ey W,y U1, ey V1) 20 = (UL, ooy Up, VT, e, V1) & U, (1)
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which is generated by linear forms since J has linear quotients w.r.t. G(J).

The inclusion "C" is clear. Now let f € (uy,...,up,v1,...,0i—1) : v;, we have fv; €
(U1, ..., Up,v1,...,0i—1). So fv; = g+h, where g € (u1,...,up) and h € (v1,...,v;_1). Since
deg fv; > d + 1, we can assume that degg > d + 1. Moreover, degu; = d for j =1,...,p,
therefore g € m(u1,...,u,) = (w1,...,ws). Hence

fui € (wr,...,ws,v1,...,0v;—1) and then f € (wy,...,ws,v1,...,0i—1) : V;.

This concludes the proof.
We get a direct consequence of this theorem which is analogous to a result over the
polynomial ring of Sharifan and Varbaro in [10; Corollary 2.4]:

Corollary 3.5. If J C FE is a graded ideal with linear quotients, then J is componentwise
linear.

The converse of Theorem is still not known. However, we can prove the following:

Proposition 3.6. Let J C E be a graded ideal with componentwise linear quotients. Sup-
pose that for each component J; there exists an admissible order §; of G(Jy;) such that
the elements of G(mJ;_yy) form the initial part of 6;. Then J has linear quotients.

Proof. By the same argument as in the proof of Theorem [3.4] in particular, using the
equation , we can confirm that .JJ has linear quotients.

To conclude this section, we present a class of ideal with linear quotients, which will be
used in the next section.

Example 3.7. A monomial ideal J C FE is said to be matroidal if it is generated in one
degree and if it satisfies the following exchange property:

for all u,v € G(J), and all ¢ with ¢ € supp(u) \ supp(v), there exists an integer j with
j € supp(v) \ supp(u) such that (u/e;)e; € G(J).

Now it is the same to the polynomial rings case that matroidal ideals have linear quo-
tients. So a matroidal ideal is a componentwise linear ideal generated in one degree, hence it
has a linear resolution. For the convenience of the reader we reproduce from [3; Proposition
5.2] the proof of this property. Proof. Let J C E be a matroidal ideal. We aim to prove that
J has linear quotients with respect to the reverse lexicographical order of the generators.

Let u € G(J) and let J, be the ideal generated by all v € G(J) with v > w in the reverse
lexicographical order. Then we get

Jy:u= (v/[v,u] :v € Jy)+ ann(u).

We claim that J,, : u is generated by linear forms. Note that ann(u) is generated by linear
forms which are variables appearing in u. So we only need to show that for each v € G(J)
and v > u, there exists a variable e; € J,, : u such that e; divides v/[v, u].

Let u = e‘f1 ...eland v = elfl ...ei’{l, where 0 < a;,b; < 1 and degu = degv. Since
v > u, there exist an integer ¢ such that a; > b; and ap, = by for k=i +1,...,n. Moreover,

J is a matroidal ideal and i € supp(u) \ supp(v), hence there exists an integer j such
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that b; > a;, or in other words, j € supp(v) \ supp(u), such that v’ = e;(u/e;) € G(J).
Then ue; = u'e;. Since j < i, we get v/ > w and v’ € J,. Hence e¢; € J, : u. Next by
J € supp(v) \ supp(u) = supp(v/[v,u]), we have that e; divides v/[v,u], this concludes the
proof.

4 Product of ideals with a linear free resolution

Motivated by a result of Conca and Herzog in [3] that the product of linear ideals (ideals
generated by linear forms) over the polynomial ring has a linear resolution, we study in this
section the following related problem:

Question 4.1. Let Jq,...,J; C F be linear ideals. Is it true that the product J = J; ... Jg
has a linear resolution?

At first, by modifying the technic of Conca and Herzog in [3] for the exterior algebra,
we get a positive answer to the above question for the case J; is generated by variables for
i=1,...,d.

Theorem 4.2. The product of linear ideals which are generated by variables has a linear
free resolution.

Proof. Let Jy,...,Jy C E be ideals generated by variables and J = Jy...Jy. If J =0,
then the statement is trivial. We prove the statement for J # 0 by two ways. One uses
properties of matroidal ideals and the other is a more conceptual proof.

Recall that a monomial ideal J is matroidal if it is generated in one degree such that
for all u,v € G(J), and all 7 with 7 € supp(u) \ supp(v), there exists an integer j with j €
supp(v) \ supp(u) such that (u/e;)e; € G(J). For the convenience of the reader, we present
next the fact (following the proof of Conca and Herzog [3] in the polynomial ring case)
that a product of two matroidal ideals over the exterior algebra is also a matroidal ideal.
In fact, let I, J be matroidal ideals, u,u; € G(I) and v,v; € G(J) such that uv,ujv; # 0
and uv,uiv; € G(IJ). Let i € supp(uiv1) \ supp(uv). We need to show that there exists an
integer j € supp(uv) \ supp(uiv1) with (u1v1/e;)e; € G(I1J).

Since supp(ujv1) = supp(ui) U supp(vi), without loss of generality, we may assume
that ¢ € supp(u1). Then i € supp(uy) \ supp(u). Since I is a matroidal ideal, there exists
J1 € supp(u) \ supp(u1) such that uy = (u1/e;)e;; € G(I). Now we have two following cases:

Case 1: If j; & supp(vy), then

J1 € supp(uv) \ supp(uiv1) and 0 # (uivi/e;)ej, = ugvy € G(1J).

So we can choose j = ji.

Case 2: If j; € supp(vy), then j; & supp(v) since j; € supp(u) and wv # 0. So j; €
supp(v1) \ supp(v). Now since J is matroidal, there exists k1 € supp(v) \ supp(v1) with
vy = (vi/ej, )er, € G(J). Note that k; # i since ¢ € supp(v) but ki € supp(v).

If k1 & supp(uz) \ supp(u), then ki ¢ supp(uy) since us = (u1/e;)ej,. We get

k1 € supp(uv) \ supp(uyvy)

115



T. D. Phong, D. D. Tai / Note on graded ideals with linear free resolution and linear quotiens...

and
0 75 (ulvl/ei)ekl = (ul/ei)ejl (vl/ejl)ekl = UQV2 € G(IJ)

So we are done because we can choose j = kj.
Otherwise k; € supp(ug) \ supp(u). Since I is matroidal, there exists jo such that

Jo2 € supp(u) \ supp(ug) with 0 # usz = (uz/ex, )ej, € G(I).
Observe that jo # ¢ since jo € supp(u) and ¢ ¢ supp(u). Then we get
0 # (urvi/ei)ej, = ((ur/ei)ej, /en, )ej, (vi/ej, e, = ugva € G(1J)

and we can choose j = jo. Hence the product of two matroidal ideals is also matroidal.
Now it is obvious that J; is a matroidal ideal for ¢ = 1,...,d. Therefore, J is also a
matroidal ideal. So J has a linear resolution by the fact a matroidal ideal has a linear
resolution; see Example
Note that in the above proof, we need the following lemma:

Lemma 4.3 ([5; Proposition 8.2.17]). Let I be a monomial ideal in the polynomial ring S
which is generated in degree d. If I has a d-linear resolution, then the ideal generated by
squarefree parts of degree d in I has a d-linear resolution.

Next we study some further special cases of products of ideals. For this we need the
following lemma:

Lemma 4.4. Let J C E be a graded ideal and f € Fy a linear form such that f is E/J-
reqular. If J has a d-linear resolution then fJ has a (d + 1)-linear resolution.

Proof. By changing the coordinates, we can assume that f = e, and e, is F/J-regular.
We have J :g e, = J + (ey). Therefore, J N (e,) = e,J. Hence,

(J + (en))/(en) = J/(J N (en)) = J/en .

Since J has a d-linear resolution, (J + (e,))/(e,) has a d-linear resolution over E/(e;) =
K{ey,...,en—1). Note that the inclusion K{ej,...,e,—1) < K(e1,...,ey) is a flat mor-
phism. Therefore, (J+(ey,))/(en) also has a d-linear resolution over E, i.e., reg(J+(ey))/(€n))
d.

Now consider the short exact sequence
0 —end —J — J/(enJ) — 0.
By Lemma [2.1} we have
reg(enJ) < max{reg(J),reg(J)/(enJ) + 1} =d + 1.
Since e,J is generated in degree d + 1, we have reg(e,J) > d + 1. This implies that

reg(enJ) =d+ 1.
Considering a product of two or three linear ideals, we have:
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Proposition 4.5. Let I, J be linear ideals such that IJ # 0. Then IJ has a 2-linear free
resolution.

Proof. Since I, J are linear ideals, we can assume that I + J = m, otherwise I, J are in
a smaller exterior algebra which we can modulo a regular sequence to get I + J = m. By
changing the coordinate and choosing suitable generators, we can assume further that

I=(e1,...,es) and J = (€411 nyGiy---,9r),s

where 1 < s < n and g; is a linear form in K{ey,...,es) fori=1,...,r.

Let ' = K{e1,...,en—1), J' = (€st1y---s€n—1,91,---,9-) C B and I' = (e1,...,e5) C
E’. We have J = J'E + (e,) and I = I'E.

Now we prove the statement by induction on n.

For the case n = 1 or n = 2, we have only two case I = (e1) and J = (e1) or J = (ey, e2).
Then IJ = (0) or IJ = (eje2), the statement holds for both these cases.

Assume that the statement is true for n — 1. This implies that the ideal I’J’ has a
2-linear resolution in E’, i.e, regp (I'J") = 2. Hence, regp(I’J'E) = 2 . Note that e, is
I' J' E-regular. This implies that I.J' : e, = [J' + (e,). Then I.J' Neyl = e, IJ'. In fact, let
felJ Nneyl, then f = ge, with g € I. Hence

gelJ :e,=1J + (e,) and then e,g € e, IJ .

Therefore, f € e,IJ" and we get I.J' Ne,I = e, I.J' .
Consider the short exact sequence

0—I1JNne,d —I1J®e, ] — 1J +e, I — 0.
This can be rewritten as
0—e S — I ®e,d — IJ — 0.
Since regp(IJ') = 2 and regy(e,IJ’) = 3 by Lemma using Lemma [2.1| we get
regp(1J) < max{regp(I.J"),regp(e,IJ") — 1} = 2.

It is clear that regy(IJ) > 2 since IJ is generated in degree 2, so we get regp(I.J) = 2.
This concludes the proof.

Proposition 4.6. Let I,J, P C E be linear ideals such that IJP # 0 and
I+JI+PJ+PCI+J+ P
Then the product IJP has a 3-linear free resolution.

Proof. Since I, J, P are linear ideals, we can assume that [ +J+P =mand I,J, P C m.
Now we prove the statement by induction on n.

Suppose that the statement holds for n — 1, that means for 3 linear ideals in E' =
K{ey,...,en—_1), their product has a 3-linear free resolution.
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Since I + J C m, by changing the coordinate and choosing suitable generators, we can
assume that I, J are generated by linear forms in £’ and P = (ey, f1,..., f1), where f; € E’
for i = 1,...,1. Let P = (f1,...,f;). We have IJP = IJP' + e,IJ. Since I,J, P' are
generated by linear forms in E’, by the induction hypothesis and Proposition we have
that regp (IJP' ®@p E') = 3 and regg,(IJ ®p E') = 2. By Lemma [4.4] and the fact that E
is a flat extension of E’, we get that regg(e,IJ) = 3 and regg(e,[JP’) = 4.

Now it is clear that e, IJP’ C IJP' Ne,IJ. We aim to prove the equality. Since e, is
E'-regular in E and I,J, P’ are generated by linear forms in ', we get that IJP' : e, =
IJP' + (ey). Let f € IJP'NeyIJ. Then f = e,g with g € IJ. We have g € IJP’ : e,,. This
implies that g € IJP'+ (e,) and then f = e,g € e, IJP'. So we get e, IJP' = IJP' Ne,IJ.
By Lemma [2.1 and the following short exact sequence

0 — ey ]JP —s IJP' & (en)IJ — IJP — 0,

we get
regp(IJP) < max{regy(e,IJP') — 1,regp(IJP' & e,IJ)} = 3.

Moreover, I[JP is generated in degree 3, so regy(IJP) > 3. This implies that IJP has a
3-linear free resolution.

Next we consider one more special case of products of ideals: powers of ideals. In [7],
Herzog, Hibi and Zheng prove that if a monomial ideal I in the polynomial ring S has a
2-linear resolution, then every power of I has a linear resolution. We have the same result
for the exterior algebra:

Proposition 4.7. Let J C E be a nonzero monomial ideal in E. If J has a 2-linear
resolution, then every power of J has a linear resolution.

Proof. Let I C S be the ideal in the polynomial ring S corresponding to J. Then [ is
a squarefree ideal with a 2-linear resolution by [1; Corollary 2.2]. We only need to consider
the case J™ # 0 for an integer m. We have I has a linear resolution by [7; Theorem 3.2].
By Lemma the squarefree monomial ideal (1 m)[gm} has also a linear resolution. Note
that (I™)(g,) corresponds to J™ in E, so using [1; Corollary 2.2] again, we conclude that
J™ has a linear resolution.

Remark 4.8. A linear form f is E/J-regular but it may be not E/J?regular. This is
a difference between the polynomial ring and the exterior algebra. For instance, let J =
(e12 + €34, €13, €23) in K{e1,...,eq). Then ey is E/J-regular since J : e4 = J + (e4). But eq4
is not E/.J?-regular since J? = (e1234) and J? : (e4) = (e123) + (e4) 2 J? + (eq).
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TOM TAT

VE IDEAN PHAN BAC CO GIAI TU DO TUYEN TiNH
VA THUONG TUYEN TINH TRONG DAI SO NGOAI

Bai bao nay nham muc dich nghién ctu cac idéan phan bac c6 gidi tu do tuyén tinh,
c6 thuong tuyén tinh trong dai s6 ngoai. Ching toi sit dung mot khai niem md rong cia
thuong tuyén tinh, goi tén 1a thuong tuyén tinh ting phan, dé dua ra mot chiing minh khéc
cho mot két qua ndi tiéng ring mot idéan c6 thuong tuyén tinh la tuyén tinh ting phan.
Sau do, ching toi xét mot vai truong hop dic biet ma mot tich clia cic idéan tuyén tinh
c6 mot giai tir do tuyén tinh.
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